UPatras SB


ieeesb logo





embs logo



Imagine a world in which your medicine cabinet notices that you are due for a prescription refill and calls it in. A sensor implanted under your skin detects a fluid buildup in your lungs and alerts your doctor, who decides your heart medication needs an adjustment and contacts the pharmacist to change your dosage. Meanwhile, sensors in your toilet confirm that your body has adjusted well to your other medications but sees indications that you may be a borderline diabetic. Your doctor, given these readings and your family medical history, suggests that you change your diet. Noting that fact, your bathroom scale asks you to punch in a weight-loss goal and starts giving you a regular progress update. Your medical checkup isn't an annual event—it happens every day, simply as you go about your daily life.

If such ambient monitoring and intervention strikes you as a little creepy, think of it this way: It could avert a heart attack, stroke, or other medical crisis. It could keep you out of the hospital and save money for both you and the health care system. Part of the savings would come from radical changes in the management of chronic diseases, which in the United States eats up 75 percent of health care spending, or about US $1.9 trillion each year.

And a health-monitoring bathroom is not science fiction. This is what health care could look like within the decade, at least for some. Perhaps predicting such dramatic change within 10 years is overly optimistic. But the necessary technologies already exist or are close at hand, the need to reduce health care costs is real, and the current health care system demands change. What's more, a groundswell of support for wireless health care is rising from a diverse group of people and organizations. These include communities of consumers who want ­better ways to manage and measure their own health, like the Quantified Self movement and Health 2.0, which sponsors competitions to spur the development of new health care apps and devices. Also on board are nonprofit organizations like the West Wireless Health Institute, in La Jolla, Calif., where I work as chief medical and science officer. We focus on lowering health care costs through health technology innovation. The nonprofit LeadingAge Center for Aging Services Technologies is working to improve quality of life for the aging. For the third year in a row, the U.S. National Institutes of Health is hosting the global mHealth Summit, a conference examining the impact of mobile technologies on health care delivery, research, business, and policy. And hundreds of start-ups are exploring near-term and long-term ways to reform the delivery of health care.

Change is happening. Yes, a technological revolution in health care has been predicted before, but we are at an inflection point now, where wireless connectivity, personal cellular devices, pervasive sensing technologies, social networks, and data analytics are mature enough to make wireless medicine a reality. And there is a will as never before to find a way to reduce crippling health care costs. Already, new devices allow diseases like diabetes and chronic heart failure to be closely monitored outside the doctor's office; tools for tracking chronic kidney disease and a variety of lung disorders are sure to follow. Eventually, most health care will occur not during occasional visits to doctors' offices, clinics, or hospitals but continuously, during ordinary activities in people's homes, cars, and workplaces.

A trial program by the U.S. Department of Veterans Affairs offered an early look at what systemic change could mean. In 2003, the VA began using simple messaging devices and occasional videoconferences to let chronically ill veterans stay in touch with nurses and other health care professionals. Under this program, one of the largest of its kind in the world, 71 000 veterans are now receiving daily monitoring for such conditions as diabetes, heart disease, and ­post-traumatic stress disorder.

The VA's program involves veterans who typically have multiple chronic illnesses that could easily land them in the emergency room unless complications are caught early. In the initial pilot study, each patient was assigned a care coordinator and given a dedicated device—typically a gizmo from the German company Robert Bosch Healthcare called a Health Buddy, which is about the size of a landline telephone and has a small LCD screen with four large buttons to let the user keep in touch with the coordinator. The patient would regularly connect one or more vital-signs ­monitoring devices—a blood pressure cuff, for example, or a ­thermometer—to the Health Buddy and follow on-screen instructions to collect that data. The patient would also respond to questions on symptoms and behavior, such as, Have you taken your medicine? Are you feeling sad? This daily assessment was automatically uploaded to a secure server, and professionals managing the patient's care then used a Web interface to look for problems. With this system, each care coordinator was able to monitor 125 patients, following up by videoconference as necessary.

The results have been striking. A December 2008 VA study of this program concluded that it had reduced hospital admissions by 19 percent and reduced days spent in hospitals or other health care facilities by 25 percent. At $1600 per patient per year, the telehealth program costs vastly less than visiting nurses ($13 121) or nursing home care ($77 745). It's not just veterans who could benefit from such an approach. A January 2009 study by the New England Healthcare Institute estimated that use of this same technology for all U.S. patients at risk of heart failure—an estimated 1.27 million people—could save up to $6.4 billion annually through reduced hospital admissions.

As successful as it has been, the VA's system is very simple tele­medicine, in many cases using dial-up telephone connections and basic devices. Add today's ubiquitous wireless connectivity and new mobile health-monitoring devices, and the benefits will be far greater.



IEEE Spectrum